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Abstract 
Quantitative fluorescence microscopy resides on the circumstance that under not too strong illumination, the 
fluorescent light emitted by a fluorophore - a dye with specific fluorescent properties - is first order 
proportional to both the light flux and the dye quantity [WEL94]. There are two aspects of quantification, the 
spatial measurements and the dosimetry of fluorescence, called fluorometry. The achievable accuracy in the 
disciplines depends of the spatial resolving power - the resolution - and the optical dynamics or range of the 
light sensors. Most texts deal with each topics individually, though it easy to proof that they closely interact 
and even cannot be defined separately [BRA91J, [CAS93J, [WIL93). 
Here we discuss the problems and the restrictions of automated geometric measurements due to 
fluorescence processes. Volume measurements have been chosen because they allow for more 
computational improvement compared to distance determination and they are mathematically easier 
accessible than area descriptions. Automated measurement means that the volume boundaries are 
determined by a segmentation algorithm. From the formal point of view this has the advantage that one can 
describe how the instrumental deviations and determination errors superimpose. 

Digital imaging 
To analytically describe the resolving power of light 
microscopes, single lens models and far-field 
approximations are used. The theories describe 
real-world microscopes almost perfectly, and 
commercial systems closely reach the theoretical 
diffraction limit [GU96], [KIN88], [OFF88], [WIL93]. 
For digital microscopy therefore it is wise to choose 
the discretization step - the digital resolution - to be 
equal to the diffraction limit. Since two bright 
structures can be distinguished when they are apart 
twice the diffraction limit, this setting satisfies 
Shannon's sampling theorem. The continues 
intensity distribution l(x) is sampled into the 

discrete voxel values v(I):= ~~I fffa(d(x)dx (eq1), 

where cr(I) is the environment centered around a 

discrete vector i with the dimension of the 
sampling distances, and the normalization factor is 
the volume of the environment. 
The resolution differs significantly in lateral- A 1 and 

depth-direction Ad . Since in each axis convex 

volumes feature two boundaries, the volumetric 
resolution of the instrument may be defined as 

A(0)v := 2Ad (2A1 )2 which is a almost useless 

definition since - in contrast to the linear resolution -
the volumetric accuracy depends on the volume 

size. A(0)v serves just as an instrument parameter. 

Localization 
Localization is the precision at which a boundary of 
two objects can be determined, it therefore is an 
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instrument as well as a specimen property. 
Perpendicular to the boundary of two adjacent 
objects of constant intensities v O and v 1 , there is 

at most one voxel with an intensity not equal to v 0 

or v 1 , the transition-voxel. The boundary can be 

precisely located, thoroughly independent of the 
resolution. Fig. 1 illustrates this case in one 
dimension. x0 is the coordinate of the transition 

voxel with intensity vT. According to eq1, 

vT = dx-v0 + (1-dx)-v1 (eq2a) and therefore, the 

VT -vi 
transition lies at x0 +dx = x0 +~-~ (eq2). 

vo -vi 

Since the localization is unlimited, the volumetric 
error is zero. 
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fig. 1 
noise free sampling 



Noise 
Real measurements impose a noise figure on the 
voxel values. We reduce the known noise 
characteristics to a mean noise amplitude n which is 
equal to the squareroot of the variance induced by 
the noise, but we respect that noise variance is 
linear proportional to the image intensity [PAW94]. 
Even small noise energies introduce major 
conceptual changes to the localization approaches. 
E.g. for eq2 we obtain vT =dx·vo +(1-dx)·v1 ±n 

and therefore dx = vr ± n -v1 and therefore a 
Vo -Vl 

mean localization error ox=~. (eq3). This 
~ 

gets critical for ox > ½, n > ½ Iv O - v 1 I , because then 

the presumption that there is one transition-voxel 
becomes invalid. Filtering methods can be applied 
to get a lower noise figure at the expense of 
resolution. It is, however, unsolved how to describe 
the impact on resolution for a general class of filters 
[CAS96]. Therefore we used the approach of 
multipoint statistics to simulate an image, as if it was 
recorded at lower resolution [MAR96_2]. We could 
show that you get well defined transition again, if the 
boundary surface of two objects covers more than k 

voxels and n < ½Jklvo -v11 (eq4). Further, some 

advanced filter techniques perform better and 

achieve the goal for n < a.Jkjv O - v 1 I with 

½ < a< 1 . Both results have to be considered 

unfortunate, because the resolution now depends 
on the instrument, the noise and, additionally, on the 
size of objects and the localization method. Larger 
objects have better defined boundaries, as it is even 
proven for pure optical observations [KIN88]. 

Filter masks 
The so called size of the filter mask, [CAS96] is the 
number of voxels involved in the multipoint statistics. 
From the noise pattern one can immediately derive, 
how reliable the assignment to a certain level (here 
either v 0 or v 1 ). Fig. 2 illustrates the wrong-

assignment probability for two adjacent objects 
which differ in brightness by the noise level. "- is the 
mask size. 
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reliability vs. filter mask size 
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There is no immediate criterion how large the mask 
shall be. If we look at subvolumes of linear 

dimension k, k3 voxels are involved, the surface 

area is stretched k 2 times, but as soon k is large 
enough so that eq4 is satisfied, ox becomes k times 
smaller - for voxels which are now k times larger in 
diameter. Therefore eq3 provides no hint how the 
mask shall be chosen, there is solely a lower bound 
for the size due to eq4. 

Split strategy 
The approach induces two classes of voxels per 
single object: inner- and surface-voxels. The 
localization of the surface voxels is independent of 
the filter size, and the detection probability of the 
inner voxels increases with mask size, according to 
fig. 2. So, the volume assignment improves for 
coarse masks. The size of the filter mask therefore 
is only limited by the surface mesh defined by the 
mask: the more extended the filter mask is chosen, 
the fewer sampling vertices on the surface can be 
defined and the curvature of the surfaces is less well 
defined. This corresponds to a second order shape 
parameter added to the linear polyhedron which 
forms the object boundary, therefore its influence is 
linear to the mask diameter and not its area. The 
volumetric error therefore increases linearly to the 
mask diameter, whereas the assignment error for 
the inner voxels decreases exponentially with the 
mask volume. The global minimum is given by fig. 2, 
and it varies substantially with the absolute size of 
the object under consideration. 
Smaller objects cannot be filtered as severely as 
large ones. This may lead to strange effects, such 
as that the absolute volumetric error for larger 
objects can get smaller than for smaller ones. For a 
noise level which is k times stronger than the 
separation of the objects, large objects may reach 
up to k times the diameter of small ones and will still 
be measured at a higher absolute volumetric 
accuracy. 

Microscopes 
Microscopes add one important aspect: a high 
degree of inhomogenity. Microscopic images are 
falsified by an extended set of influences. The most 
striking ones are discussed in [SCA96] - the medium 
and the specimen defocus the light and blur it - the 
so called aberration -, and the subsequent depth 
discrimination optics cuts off the blurred light which 
leads to a strong loss of image intensities for the 
deeper layers of the specimen. The strong laser 
light deteriorates the fluorophores which results in 
exponential signal loss over time, and finally, the 
specimen absorbs light and therefore attenuates the 
signal. The last influence is the most complicated 
one to compensate for [MAR96], [ROE91], but not 
the strongest one. Even for an isotropic specimen 
with constant refraction and attenuation, one obtains 
a very complex light-loss pattern in the depth 
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(eq5), where z is the depth variable [MAR96_2]. 
Here the first bracket represents the aberration - N 
is collective constant for the wavelength and the 
refractive index, d is normalization index, and z 0 is 
the depth of focus-, the second factor stands for the 
attenuation - a is the damping constant - and the 
last one is the deterioration factor - A is a constant 
for the light intensity and the time-per-section. Fig. 3 
shows a microscopic section degraded this way. 

fig. 3 
depth degrade confocal image 

It is inadequate to evaluate eq5 to investigate the 
influence on the localization. Instead, we assume an 
amplification error q at the depth of interest. Again 
we use a modified eq2a 
vT ·q =dx-v0 +(1-dx)·v1 and get 

8x = (1-q) VJ (eq6). Considering that q may 
Vo -Vl 

go down to 0.2 [MAR96], this disables simple 
detection methods such as thresholding. 

Image restoration 
Since the image formation processes in the 
microscope are known, the quantitative image 
reconstruction basically is possible. [BAC94], 
[MAR96], [ROE91] elucidate certain aspects of 
microscopic image restoration. At our location we 
developed a software package called QUASIA-3D 
(quantitative system for image acquisition in 30 
microscopy) that takes into account all of the 
previously mentioned influences and a few more 
ones. A restoration run is depicted in fig. 4. 
Thereby, the q factor can be eliminated, however, 
the noise level increases inverse proportional to q. 
With 14 2 ) ( eq7), more precisely, but £ is a 

/~q+E·q 

rather small constant - about 2% for 20 sections. 
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The improvement for thresholding is invaluable - for 
a real specimen, the errors decreased to about 50% 
from some 300% for the unprocessed image. 
Even edge detector operators like [CAN86] gain 

efficiency - the noise level increases linear to q-1 , 

but the count of available reference voxels goes up 

stronger than q-2 , because the image is equalized. 

fig. 4 
original and reconstructed image dataset 

Conclusions 
It is possible to improve the performance of all 
general filter procedures in the context of 
localization, by prior application of quantitative 
reconstruction, even, if the improvement for complex 
filters cannot be quantified. 
Simple multipoint-statistics give a lower bound how 
rewarding image restoration in advance to 
segmentation is. For severely degraded microscopic 
images a deviation due to the light loss of up to 
400% can be expected, for which restoration 
improves localization somewhat worse than a factor 
of 4, as eq7 lets expect. 
Splitting the volumetry in surface and core voxels 
brings - aside from easier computation - a true 
criterion how filtering shall be chosen and a 
quantitative estimate of the to be expected errors 
due to noise. 



References 

[BAC94] 
Three-Dimensional Volume Reconstruction in Confocal Microscopy: Practical Considerations 

R.Baccalao, A.Garfinkel 
Three-Dimensional Confocal Microscopy 1994 

[BRA91] 
Basic Measurement Techniques for Light Microscopy 

S.Bradbury, P.J.Evennett, H.Haselmann, H.Piller 
RMS Microscopy Handbooks, Oxford Science Publications 

[CAN86] 
A Computational Approach to Edge Detection 

J.Canny 
IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 679, 1986 

[CAS93] 
Resolution and Sampling Requirements for Digital Image Processing, Analysis and Display 

K. R. Castleman 
Electronic Light Microscopy 93 

[CAS96] 
Digital Image Processing 

K. R. Castleman 
Prentice-Hall Inc. 

[GU96] 
Principles of three-dimensional imaging in confocal microscopes 

Min Gu 
Singapore (etc.): World Scientific, cop. 1996 

[HAM88] 
Excentration errors combined with wavefront aberration in a coherent scanning microscope 

AM.Hammed 
SPI E Proceedings 1988 

[HEL88] 
Spherical Aberration in Confocal Microscopy 

T.Hellmuth, P.Seidel, A.Siegel 
SPIE Proceedings 1988 

[KIN88] 
Imaging theory for the scanning optical microscope 

G.S.Kino, C-H.Chou and G.Q.Xiao 
SPIE Proceedings 1988 

[MAR96] 
A precise light attenuation correction for confocal scanning microscopy with O(n4/3) computing time 
and O(n) memory requirements for n voxels 

F. Margadant, T. Leemann, P. Niederer 
Journal of Microscopy, Vol. 181, Pt 3, May 1996 

[MAR96_2] 
Visualization of noisy and weak structures at the resolution limit 
(in German: Visualisierung schwacher verrauschter Strukturen an der Auflosungsgrenze) 

F. Margadant 
Biomedical Techniques Europe, Sep. 1996 

[MEY92] 
Integrals and Gradients of Images 

F.Meyer 
Image Algebra and Morphological Image Processing 111, SPIE 1992 

[OFF88] 
Axial resolution of a confocal scanning optical microscope 

M.J.Offside, C.W.See and M.G.Somekh 
SPI E Proceedings 1988 

461 



[PAW94] 
Sources of Noise in Three-Dimensional Microscopical Data Sets 

.J.B.Pawley 
Three-Dimensional Confocal Microscopy 1994 

[PIT93] 
Digital Image Processing Algorithms 

J.Pitas 
Prentice International Series 1993 

[ROE91] 
An FFT-based Method for Attenuation Correction in Fluorescence Confocal Microscopy 

Roerdink, J.B.T.M., Bakker, M. 
Department for Analysis, Algebra and Geometry Amsterdam: CWI 1991 

[SCA96] 
Dispersion, Aberration and Deconvolution in Multi-Wavelength Fluorescence Images 

B.A.Scalettar, J.R.Swedlow, J.W.Sedat, D.A.Agard 
Journal of Microscopy, Vol. 182, 1996 

[WEL94] 
Fluorescent Labels for Confocal Microscopy 

S.Wells, I.Johnson 
Three-Dimensional Confocal Microscopy 1994 

[WIL93] 
Image Formation in Confocal Microscopy 

T.Wilson 
Electronic Light Microscopy 93 

462 


	SKMBT_36318011011450

